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Abstract
Taking the isotropic limit � → 1 in a recent representation theoretic
construction of Baxter’s Q-operators for the XXZ model with quasi-periodic
boundary conditions we obtain new results for the XXX model. We show
that quasi-periodic boundary conditions are needed to ensure convergence of
the Q-operator construction and derive a quantum Wronskian relation which
implies two different sets of Bethe ansatz equations, one above, the other below
the ‘equator’ of total spin Sz = 0. We discuss the limit to periodic boundary
conditions at the end and explain how this construction relates to the trace
functional introduced by Boos et al in the context of correlation functions
on the infinite lattice. We also identify a special subclass of solutions to the
quantum Wronskian and numerically verify them up to spin chains of ten sites.
This special type of solutions might persist for longer chains.

PACS numbers: 02.30.Ik, 05.30.−d

1. Introduction

Historically Baxter’s Q-operator was introduced as substitute means for the coordinate Bethe
ansatz in solving the eight-vertex model [1–3], but has more recently seen wider applications
in the field of integrable systems e.g. [4–9] making it an important and almost universal tool.
To motivate his technique Baxter first discussed the concept of the Q-operator in the context
of the six-vertex or XXZ model, where a direct comparison with the coordinate Bethe ansatz
can be made. While our primary interest in this paper will be the XXX model, it is helpful to
consider first the anisotropic or XXZ case. Denote by t the transfer matrix; then the Q-operator
is implicitly defined through the functional equation

t (u)Q(u) = χ
(
u − 1

2

)
Q(u + 1) + χ

(
u + 1

2

)
Q(u − 1), (1.1)

where χ(u) = sinM γu is the XXZ quantum determinant with M being the number of lattice
columns, respectively, the number of sites in the spin chain. In addition to this relation,
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known as TQ equation, one usually requires a number of properties such as ‘analyticity’ of the
Q-operator in the spectral variable u and that [t (u),Q(u′)] = [Q(u),Q(u′)] = 0 for an
arbitrary pair u, u′ ∈ C. The latter commutation relations allow one to discuss the TQ
equation on the level of eigenvalues and this is where one makes contact with the coordinate
Bethe ansatz [10] which determines the spectrum of the transfer matrix in terms of the solutions
{vk}nk=1 to the Bethe ansatz equations [11, 12],(

sinh γ (vj − i/2)

sinh γ (vj + i/2)

)M

=
∏
k �=j

sinh γ (vj − vk − i)

sinh γ (vj − vk + i)
, j = 1, 2, . . . , n = M/2 − Sz.

(1.2)

Here, γ is the crossing or coupling parameter of the six-vertex model and Sz � 0 the total
spin operator. Postulating that the eigenvalues of the Q-operator are of the form [3]:

Q(u) =
n∏

j=1

sinh γ (u − vj )

sinh γ
, (1.3)

the outcome of the coordinate Bethe ansatz then implies the TQ relation (1.1), which is the
starting point for the construction of the operator Q. Note that this line of argument is based on
the essential assumption that the coordinate Bethe ansatz yields a complete set of eigenstates
of the transfer matrix with a finite set of Bethe roots vj . It is this assumption which has to be
treated with care in the isotropic limit γ → 0 yielding the XXX model1.

The transfer matrix of the XXX model as well as the associated Heisenberg spin chain is
sl2 symmetric, whence their eigenspaces decompose into sl2 modules. As is well known, the
finite solutions to the XXX Bethe ansatz equations (first derived by Bethe in [10] albeit in a
different form),(

vj − i/2

vj + i/2

)M

=
∏
k �=j

vj − vk − i

vj − vk + i
, (1.4)

now only yield the highest weight vectors in each sl2 module [16] . The remaining states
within each module are obtained through the action of the symmetry algebra and have been
referred to as ‘non-regular’ Bethe states as they involve ‘infinite rapidities’ in the particular
parametrization used in (1.4); see e.g. [17] for a discussion on how to recover the non-regular
Bethe states through a limiting procedure. Thus, the obvious ansatz

Q(u) =
n∏

j=1

(u − vj ) (1.5)

for the eigenvalues of an XXX Q-operator becomes problematic due to the presence of ‘infinite
rapidities’, or more precisely not all states correspond to finite solutions of the Bethe ansatz
equations (1.4). Clearly, there are ways out of this dilemma, either by choosing a different
parametrization such that all rapidities stay finite (this is for instance the case in the coordinate
Bethe ansatz, where the non-regular Bethe states correspond to the case that multiple quasi-
momenta vanish), or by (continuously) breaking the sl2 symmetry in such a manner that the
assumption on the completeness of the Bethe ansatz becomes applicable again.

In this work we shall do the latter by introducing quasi-periodic boundary conditions,
see e.g. [18–21]. This has the advantage that all relevant algebraic properties needed for the
quantum inverse scattering method [22] stay intact and that we can take at the very end the limit
to periodic boundary conditions making contact with previous investigations of Q-operators

1 Similar problems occur for the XXZ model at roots of unity [13, 14] due to a partial loop algebra symmetry [15].
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for the XXX model. Of particular interest will be aspects which are not accessible through
the coordinate Bethe ansatz, namely the existence of two linearly independent solutions, say
Q±, to the TQ equation and, closely related to this question, the derivation of the following
quantum Wronskian identity:

ωQ+
ω

(
u − i

2

)
Q−

ω

(
u + i

2

) − ω−1Q+
ω

(
u + i

2

)
Q−

ω

(
u − i

2

)
ω − ω−1

= χ(u), (1.6)

which is a new result. Here, ω = exp(iφ) is the twist parameter associated with the quasi-
periodic boundary conditions and χ is the aforementioned quantum determinant, but now of
the XXX model. Since the latter is explicitly known, e.g. χ(u) = uM for the homogeneous
case, one can employ the quantum Wronskian (1.6) rather than the generalization of the Bethe
ansatz equations (1.4) to twisted boundary conditions when solving the model. Namely,
making the ansatz (which will be justified through our construction of Q±

ω in the text)

Q+
ω(u) =

n∏
j=1

(
u − v+

j

)
and Q−

ω (u) =
M−n∏
j=1

(u − v−
j ), n = M

2
− Sz (1.7)

for the eigenvalues of the two solutions to the TQ equation, the roots v±
j = v±

j (ω) are
determined through (1.6). Here, Sz denotes the total spin component in the direction singled
out by the quasi-periodic boundary conditions. Note that upon setting u = v±

j + i/2, v±
j − i/2

identity (1.6) implies two different sets of Bethe ansatz equations, one above, the other one
below the equator Sz = 0. Due to the quasi-periodic boundary conditions, ω �= 1, the
Bethe roots v±

j are all finite and the number of solutions matches the dimension of each fixed
spin-sector signalling completeness; compare for example with the discussion in [23].

As discussed above this ceases to be true in the limit ω → 1 corresponding to periodic
boundary conditions. From (1.6) we infer that this limit might indeed be singular unless the
numerator and denominator vanish simultaneously. We will compare the outcome of this
paper with the findings for periodic boundary conditions by Pronko and Stroganov [24], who
have presented a similar quantum Wronskian without the denominator at ω = 1 and a different
degree for the second solution Q−, namely deg Q− = M − n + 1. Their Wronskian relation
can be numerically solved but the resulting number of solutions is in general much smaller
than the dimension of the state space

(
M

n

)
. In light of the previous remarks on the sl2

symmetry, this is not surprising as their solutions only yield the highest weight vectors in
each module. Taking the limit ω → 1 in the explicit solutions to (1.6) for small chains we
indeed find that of those solutions Q±

ω which stay finite, both approach the Q+ solution of
Pronko and Stroganov. We shall comment on this in more detail in the text, see section 5.2.

The appearance of singularities in the limit of periodic boundary conditions can also be
understood from the explicit construction of the Q-operator for twisted boundary conditions.
The latter is given as the trace of a monodromy matrix with infinite-dimensional auxiliary
space. In order to obtain a well-defined object one must ensure convergence of the trace.
As we will see in the text this actually requires the introduction of quasi-periodic boundary
conditions. Previous constructions of Q-operators for the XXX spin chain [25–27] have been
for periodic boundary conditions only, where Q has been represented as an integral kernel (see
also [28] for a related XXZ construction).

In contrast, the limit of the transfer matrix from quasi-periodic to periodic boundary
conditions is well defined. In fact, this applies to all higher spin transfer matrices which can
be expressed in terms of Q±

ω as follows:

t (u; x) = lim
ω→1

ωxQ+
ω

(
u − ix

2

)
Q−

ω

(
u + ix

2

) − ω−xQ+
ω

(
u + ix

2

)
Q−

ω

(
u − ix

2

)
ω − ω−1

. (1.8)
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When x = n ∈ N>0, the function t (u; x = n) gives the spectrum of the transfer matrix
with spin s = (n − 1)/2 in the auxiliary space. However, if we take x to be an arbitrary
complex parameter, the resulting spectrum belongs to a generalized transfer matrix used in the
discussion of correlation functions for the infinite chain [29–32]. This result is the analogue
of a previous discussion for the XXZ model [33, 34] and the discussion presented here is in
accordance with these earlier results for the more general case when γ �= 0. At the moment
there appears to be no construction of a Q-operator for ω = 1 which allows us to define (1.8).
This is one of the main reasons for the construction presented in this paper.

In section 2, the basic definitions of the XXX model and its fusion hierarchy are
stated. Section 3 contains the construction of the Q-operator which is simply the isotropic
limit (γ → 0) of earlier constructions for the XXZ model [34]. We briefly address the
aforementioned conditions for convergence due to an infinite-dimensional auxiliary space and
state the relevant functional equations with the transfer matrix. We omit most proofs for those
results which readily follow from taking the isotropic limit in the XXZ construction. For
instance, the eigenvalues of the Q-operator are discussed by making contact with the algebraic
Bethe ansatz discussion in [33]. By comparison with the analogous results for the XXZ
model, it is shown that the Q-operator factorizes into two linearly independent solutions to
Baxter’s TQ equation. We discuss how they are related via spin reversal. The relation with the
fusion hierarchy and its analytic continuation (1.8) to ‘complex spin’ is presented in section
4. Section 5 gives the quantum Wronskian relation between the two independent solutions
to Baxter’s TQ equation, which is then compared against the one of Pronko and Stroganov
[24]. A special subset of solutions to the twisted quantum Wronskian (1.6) is also discussed
based on numerical results for chains of even length � 10. Their associated Bethe roots obey
identities which imply (and are therefore more fundamental than) the Bethe ansatz equations.
The conclusions are stated in section 6.

2. Definitions

Let us start by introducing our conventions for the definition of the XXX model. Denote by
{σx = σ 1, σ y = σ 2, σ z = σ 3} the Pauli matrices acting on C

2 and let P be the permutation
operator, P(v ⊗ w) = w ⊗ v. Then the basic ingredient for constructing the XXX model is
the following simple solution to the Yang–Baxter equation

r(λ) = λ +
1

2
+

3∑
α=1

σα ⊗ σα = λ + P ∈ End(C2 ⊗ C
2). (2.1)

Note that we have changed our conventions from that in the introduction as it simplifies some
of the following computations. The alternative definition of the XXX r-matrix also commonly
used in the literature reads

r̃(u) := ir(−iu − 1/2) = u + i
3∑

α=1

σα ⊗ σα = u − i/2 + iP. (2.2)

Both definitions only differ by a re-parametrization of the spectral parameter, λ → −iu−1/2,

and an overall factor i = √−1. The XXX functional relations and equations stated in the
introduction refer to this last convention (2.2).

In terms of (2.1) the transfer matrix of the inhomogeneous XXX model with quasi-periodic
boundary conditions is defined as follows:

tω(λ) = Tr
C

2ωσz⊗1rM(λ − λM) · · · r1(λ − λ1), ω = eiφ. (2.3)
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Here, the trace is taken in the first factor of the r-matrix, i.e. tω ∈ End(C2)⊗M . The set {λm}Mm=1
is some arbitrary generic inhomogeneity parameters, while the parameter ω = exp(iφ)

incorporates the twist angle φ which for the moment is allowed to be a generic complex
number, but can be specialized later on to real values in order to ensure hermiticity. In the
homogeneous limit λ1 = · · · = λM = 0 its meaning becomes apparent when writing down
the associated spin-chain Hamiltonian

Hω = d

dλ
ln

tω(λ)

(λ + 1)M

∣∣∣∣
λ=0

= 1

2

M∑
m=1

(�σm · �σm+1 − 1) (2.4)

with the boundary conditions

σx
M+1 ± iσy

M+1 = ω±2
(
σx

1 ± iσy

1

)
and σ z

M+1 = σ z
1 . (2.5)

These boundary conditions break for ω �= 1, the spherical symmetry of the Hamiltonian which
unlike in the case of periodic boundary conditions is not sl2 invariant. However, there is an
axial symmetry, i.e. the total spin operator

Sz = 1

2

M∑
m=1

σ z
m (2.6)

is preserved. This breaking of the spherical symmetry is significant for the Bethe ansatz
analysis of the spectrum as for quasi-periodic boundary conditions all eigenvectors become
regular Bethe states. In the case of periodic boundary conditions this is only true for the
highest weight state in each sl2-module spanning one of the degenerate subspaces of the
transfer matrix respectively the Hamiltonian. This fact also plays an important role in
the construction of the Q-operator.

Besides the transfer matrix and the Hamiltonian it will be convenient to discuss the entire
fusion hierarchy of the XXX model. To this end consider the Chevalley–Serre generators
of sl2,

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h; (2.7)

then the following defines a well-known Verma module πx depending on a complex parameter
x ∈ C:

πx(e)|k〉 = (x − k)k|k − 1〉, πx(e)|0〉 = 0

πx(f )|k〉 = |k + 1〉,
πx(h)|k〉 = (x − 2k − 1)|k〉, k = 0, 1, . . . ,∞.

(2.8)

It is this Verma module which will form the auxiliary space for the Q-operator. Note that
if x = n ∈ N>0 and one invokes the truncation condition πx(f )|n〉 = 0, the n-dimensional
subspace spanned by the vectors {|k〉}n−1

k=0 gives rise to the finite-dimensional modules π(n−1)

known as spin s = (n − 1)/2 representations in the physics literature. Set

L(λ) =
(

λ + h+1
2 f

e λ − h−1
2

)
∈ U(sl2) ⊗ End C

2; (2.9)

then

L12(λ)L13(λ + λ′)r23(λ
′) = r23(λ

′)L13(λ + λ′)L12(λ) (2.10)

and the higher spin transfer matrix t (n)
ω is defined through

t (n)
ω (λ) = Trπ(n)ωh⊗1LM(λ − λM) · · · L1(λ − λ1). (2.11)
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The two distinguished elements in this hierarchy are the previously introduced transfer matrix
tω = t (1)

ω of spin 1/2 and the quantum determinant χ corresponding to the trivial representation
of spin 0,

χ(λ) = t (0)(λ) =
M∏

m=1

(
λ − λm +

1

2

)
. (2.12)

From these two elements all the other members of the fusion hierarchy can be generated via
the functional equation

t (n)
ω

(
λ +

n + 1

2

)
t (1)
ω (λ) = t (0)

(
λ +

1

2

)
t (n+1)
ω

(
λ +

n

2

)
+ t (0)

(
λ − 1

2

)
t (n−1)
ω

(
λ +

n + 2

2

)
.

(2.13)

Instead of solving this functional relation in terms of t (1)
ω , t (0), which leads to quite involved

formulae, it is simpler to consider an auxiliary linear problem, Baxter’s TQ equation, which
we discuss next.

3. The Q-operator and its spectrum

We extend the definition of the higher spin transfer matrix to the infinite-dimensional Verma
module (2.8) introduced above and set

Qω(λ; x) = Trπx
ωh⊗1LM

(
λ − λM +

x

2

)
· · ·L1

(
λ − λ1 +

x

2

)
. (3.1)

This definition of the Q-operator coincides with the isotropic limit of the definition for the
XXZ model [34]. Note that the trace runs now over a (half) infinite-dimensional space, whence
it is crucial to have quasi-periodic boundary conditions which upon the right choice of the
twist parameter ω ensure convergence [33].

Since the matrix Qω(λ; x) preserves the total spin, [Qω(λ; x), Sz] = 0, its matrix elements
do always contain the same number of the Chevalley–Serre generators e and f . Using the
Casimir relation,

πx(C) = x2 − 1

2
, C = h2/2 + h + 2f e, (3.2)

we deduce that it suffices to ensure that the following expressions are finite:

Trπx
{ωhhm} = ωx

∞∑
k=0

ω−2k−1(x − 2k − 1)m < ∞, m = 0, 1, 2, . . . ,M. (3.3)

This is obviously guaranteed as long as |ω| > 1. Employing the geometric series to compute
the trace, we then analytically continue this operator from the region of convergence to the
whole complex ω plane. Note that there remains a pole at ω = 1.

For instance, by construction Qω(λ; x) is a polynomial of degree M in λ and we have for
the coefficient of the highest power λM,

Qω(λ; x) = Trπx
{ωh}λM + · · · =

∞∑
k=0

ωx−2k−1λM + · · · = ωx

ω − ω−1
λM + · · · , (3.4)

where the last expression can be continued with respect to ω from the region of convergence
into the complex plane. Henceforth, this analytic continuation from the region of convergence
shall always be implicitly understood.
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The crucial property of the Q-operator is the following functional equation, which strictly
speaking is not yet Baxter’s TQ equation:

tω(λ)Qω(λ; x) = Qω(λ + 1; x − 1)

M∏
m=1

(λ − λm) + Qω(λ − 1; x + 1)

M∏
m=1

(λ − λm + 1). (3.5)

We omit the proof as it follows from taking the isotropic limit in the analogous XXZ relations;
see e.g. [33–35]. The difference with Baxter’s TQ equation is the fact that the additional
complex parameter x originating from the definition of the Verma module also shifts, instead
of only a shift in the spectral variable λ. Thus, the above equation should rather be seen as
an extension of the fusion hierarchy to ‘infinite’ spin. Nevertheless, the solutions to Baxter’s
TQ equation are obtained from Qω(λ; x) through special limits. Namely, as we will discuss
below we have the following factorization:

Qω(λ; x) = ωx

ω − ω−1
Q+

ω(λ)Q−
ω (λ + x), (3.6)

where Q±
ω are two linearly independent solutions to Baxter’s TQ equation

tω(λ)Q±
ω (λ) = ω∓1Q±

ω (λ + 1)

M∏
m=1

(λ − λm) + ω±1Q±
ω (λ − 1)

M∏
m=1

(λ − λm + 1). (3.7)

We now turn to the discussion of the spectrum of the Q-operator where we will explain in
more detail the above factorization into the solutions Q±

ω .

3.1. The algebraic Bethe ansatz analysis of Q

In the context of the XXZ model, the spectrum of the Q-operator has been analysed [33]
using the formalism of the algebraic Bethe ansatz [22]. We recall that for twisted boundary
conditions there is no problem with the Bethe ansatz as the sl2 symmetry of the XXX model
is broken and all eigenstates of the XXX transfer matrix are regular Bethe states; see for
instance the discussion in [23] where the completeness of the Bethe ansatz in a neighbourhood
of ω = 0 has been shown. Using the analogous algebraic relations as in the XXZ case [33],
one can show that the Bethe states are eigenvectors of the Q-operator2. Namely, decomposing
the monodromy matrix of the XXX model in the usual manner

t(λ) = ωσz⊗1rM(λ − λM) · · · r1(λ − λ1) =
(

A(λ) B(λ)

C(λ) D(λ)

)
, (3.8)

one considers for n = M/2−Sz > 0 an ‘admissible’ solution [23] to the Bethe ansatz equations
above the equator (note that according to the conventions (2.1) and (2.2) the corresponding
Bethe roots are related by ξ+

j → −iv+
j − 1/2)

ω−1
n∏

j=1

(
ξ+
i − ξ+

j + 1
) M∏

m=1

(
ξ+
i − λm

)
+ ω

n∏
j=1

(
ξ+
i − ξ+

j − 1
) M∏

m=1

(
ξ+
i − λm + 1

) = 0. (3.9)

Then it follows from the Yang–Baxter equation that the matrix elements {Qkl}k,l∈N of the
monodromy matrix

Q(λ) = ωh⊗1LM

(
λ − λM +

x

2

)
· · ·L1

(
λ − λ1 +

x

2

)
2 At the moment this has only been carried out for Bethe states with n < 4 due to the complicated and numerous
unwanted terms, see the appendix in [33]. However, in the case of the XXZ model alternative proofs (based on
functional relations) exist [36, 37] which match the algebraic Bethe ansatz result for arbitrary n. The spectrum for
the XXX model presented here is the isotropic limit of the XXZ result [33, 34].
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with respect to the infinite-dimensional auxiliary space corresponding to πx satisfy certain
commutation relations with the Yang–Baxter algebra {A,B,C,D}, for example [33]:

Qk,l(λ)B(ξ) = αl+1δl − βl+1γl

αkαl+1
B(ξ)Qk,l(λ) +

βl+1

αl+1
Qk,l+1(λ)A(ξ)

− βk

αk

Qk+1,l(λ)D(ξ) +
βkβl+1

αkαl+1
Qk+1,l+1(λ)C(ξ),

where the coefficients are determined through the matrix elements of the L-operator (2.9),

αk = λ − ξ + x − k, βk = 1, γk−1 = (x − k)k, δk = λ − ξ + k + 1. (3.10)

For a complete list of the algebraic identities we refer the reader to [33]. Employing these
commutation relations one can identify the eigenvalue of the Q-operator on a Bethe state.
Denoting by |0〉 the pseudo-vacuum, i.e. the state with all spins up, the Bethe vector associated
with an admissible solution to (3.9) is an eigenstate of the Q-operator with eigenvalue

Qω(λ; x)B
(
ξ+

1

) · · · B(
ξ+
n

)|0〉 = ωx

ω − ω−1
Q+

ω(λ)Q−
ω (λ + x)B

(
ξ+

1

) · · · B(
ξ+
n

)|0〉, (3.11)

where

Q+
ω(λ) =

n∏
j=1

(
λ − ξ+

j

)
(3.12)

and

Q−
ω (λ) = (ω − ω−1)Q+

ω(λ)

∞∑
k=0

ω−2k−1 ∏
m(λ − λm − k)

Q+
ω(λ − k)Q+

ω(λ − k − 1)
. (3.13)

Note that Q−
ω is polynomial in λ due to the Bethe ansatz equations. In fact, by the very

construction of the Q-operator it must be a polynomial of degree M − n,

Q−
ω (λ) =

M−n∏
j=1

(λ − ξ−
j ). (3.14)

Exploiting the completeness of the Bethe ansatz for generic quasi-periodic boundary conditions
and inhomogeneity parameters [23], we obtain the factorization of the Q-operator into the
previously introduced, linearly independent solutions Q±

ω of Baxter’s TQ equation (3.7). We
might define them implicitly as operators through the following limits:

lim
x→−λ

Qω(λ; x) = ω−λ

ω − ω−1
Q+

ω(λ)Q−
ω (0) (3.15)

and

lim
λ→0

Qω(λ; x) = ωx

ω − ω−1
Q+

ω(0)Q−
ω (x). (3.16)

We shall denote the operators and eigenvalues by the same symbol. In contrast to the XXZ
case [34], the operators Q±

ω (0) are not easily determined and we are missing at the moment
concrete operator expressions for them. However, explicit computation of the Q-operators in
the various spin sectors for small lattice sizes (M � 6) shows that the following expressions
drastically simplify:

ωλQω(λ;−λ)Qω(0; 0)−1 = Q+
ω(λ)Q+

ω(0)−1 (3.17)

and

ω−λQω(0; 0)−1Qω(0; λ) = Q−
ω (0)−1Q−

ω (λ). (3.18)
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Both (3.12) and (3.14) are obviously solutions to Baxter’s TQ equation (3.7) and are normalized
to the identity matrix at the origin λ = 0. The inverse matrices exist as long as none of the
Bethe roots ξ±

j vanishes, which is the case as long as ω �= 1. Despite this lack of information on
the normalization constants, our Q-operator analysis yields computational advantages. Before
we address the latter, let us first discuss the relationship between Q±

ω (λ) under spin reversal.

3.2. Spin reversal

Define the spin-reversal operator by setting R = ∏M
m=1 σx

m. Due to the twisted boundary
conditions spin-reversal symmetry is broken and we have for the transfer matrix the identity

Rtω(λ)R = tω−1(λ). (3.19)

Let us now investigate the transformation of the Q-operator under spin reversal. From the
equality

(1 ⊗ σx)L(λ)(1 ⊗ σx) = −
(−λ − 1 + h+1

2 −e
−f −λ − 1 − h−1

2

)
(3.20)

it follows for the homogeneous model λ1 = · · · = λM = 0 that

RQω(λ; x)R = (−)MQω(−λ − 1 − x; x)t . (3.21)

Alternatively, we can compute the spectrum of Q̆ω := RQωR from the algebraic Bethe ansatz
similar as before. In terms of the matrix elements of the associated monodromy matrices the
basic relation we need is

Q̆k,lB =
(

αl

δk

− γl−1βl

δkδl−1

)
BQ̆k,l +

γl−1

δl−1
Q̆k,l−1A − γk

δk

Q̆k+1,lD +
γkγl−1

δkδl−1
Q̆k+1,l−1C. (3.22)

Here, the coefficients are the same as in (3.10). This then leads to the following eigenvalues
corresponding to Bethe states:

RQω(λ; x)RB
(
ξ+

1

) · · · B(
ξ+
n

)|0〉

= Q+
ω−1(λ + x)Q+

ω−1(λ)

∞∑
k=0

ωx−2k−1 ∏
m(λ − λm + k + 1)

Q+
ω−1(λ + k)Q+

ω−1(λ + k + 1)
B

(
ξ+

1

) · · · B(
ξ+
n

)|0〉.

As already previously mentioned, for generic inhomogeneity parameters λm and a suitable
neighbourhood of ω = 0 (or ω = ∞), the Bethe ansatz yields a complete set of eigenstates
[23]. This fact now implies the operator equation

RQω(λ; x)R = Qω−1(λ + x;−x) = − ωx

ω − ω−1
Q+

ω−1(λ + x)Q−
ω−1(λ). (3.23)

Therefore, under spin reversal the roles of Q+
ω,Q−

ω are interchanged. These relations match
the analogous ones derived for the six-vertex model [33, 34, 37].

4. Fusion hierarchy and complex dimension

One of the aforementioned advantages of our Q-operator analysis is that the relation between
Qω(λ; x) and the higher spin transfer matrices t (n−1)

ω is particularly simple allowing one
through analytic continuation to compactly present the information on the entire fusion
hierarchy. Specializing x → n ∈ N, it was already pointed out earlier that the infinite-
dimensional Verma module (2.8) contains a finite-dimensional subrepresentation spanned
by the vectors {|k〉}n−1

k=0 and which is isomorphic to the sl2 representation π(n−1) of spin
s = (n− 1)/2. The remaining space spanned by {|k〉}∞k=n can be identified again as the Verma
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module πx with x = −n. This simple representation theoretic fact translates into the following
functional relation when splitting the trace over the aforementioned subspaces:

t (n−1)
ω (λ) = Qω

(
λ − n

2
; n

)
− Qω

(
λ +

n

2
;−n

)
. (4.1)

Thus the spectrum of the higher spin transfer matrices takes a particularly simple form in
terms of the spectrum of Qω(λ; x). In contrast, the expression from the algebraic Bethe ansatz
and the fusion relation (2.13) is more involved. Furthermore, we might analytically continue
expression (4.1) in the spin variable n setting

tω(λ; x) = Qω

(
λ − x

2
; x

)
− Qω

(
λ +

x

2
;−x

)
. (4.2)

The last object combines the information of the entire fusion hierarchy. Note that in (4.1)
respectively (4.2) one can safely take the limit to periodic boundary conditions, i.e. the
following object is well defined:

t (λ; x) = lim
ω→1

tω(λ; x) = lim
ω→1

[
Qω

(
λ − x

2
; x

)
− Qω

(
λ +

x

2
;−x

)]
. (4.3)

In this manner one recovers the XXX model with periodic boundary conditions. The transfer
matrix t (λ; x) with ‘complex dimension’ x coincides with the generalized trace construction
[29] in the context of correlation functions on the infinite lattice. This complex dimension
occurs as the coefficient of the highest power in the polynomial t (λ; x),

t (λ; x) = xλM +
M−1∑
m=0

tm(x)λm. (4.4)

In comparison, the analogous result in the context of the six-vertex or XXZ model showed the
appearance of logarithmic terms; see [34].

4.1. The trace functional: a simple example M = 4, Sz = 0

It is instructive to verify for a simple example whether the construction (4.3) coincides with
the definition through the trace functional given in [29]. Setting M = 4 and Sz = 0, we
consider a diagonal matrix element of the Q-operator,

Qω(λ; x)α1,...,α4
α1,...,α4

=
∞∑

k=0

ωx−2k−1(λ + x − k)2(λ + k + 1)2. (4.5)

Here, αi = ±1 are the eigenvalues of σ z
i acting on the ith lattice site with i = 1, 2, 3, 4 and∑

i αi = 0. Using the formula for the geometric series and analytically continuing the result
in ω afterwards to take the limit ω → 1 in (4.3) we arrive at

t (λ; x)α1...α4
α1...α4

= 32x − 20x3 + 3x5

240
+

4x − x3

6
λ +

10x − x3

6
λ2 + 2xλ3 + xλ4. (4.6)

The action of the trace functional Trx : U(sl2) ⊗ C[x] → C[x] introduced in [29] (not to be
mistaken for Trπx

�= Trx) on the powers of the Cartan generators is defined through

Trx{ezh} = sinh(zx)

sinh z
= x +

x3 − x

6
z2 +

7x − 10x3 + 3x5

360
z4 + · · · . (4.7)

By the action of the trace functional on the monodromy matrix of L-operators we compute

TrxL(λ)α4
α4

L(λ)α3
α3

L(λ)α2
α2

L(λ)α1
α1

= Trx

{(
λ +

h + 1

2

)2 (
λ − h − 1

2

)2
}

= Trx{1 − 2h2 + h4}
16

+
Trx{1 − h2}

2
λ +

Trx{3 − h2}
2

λ2 + 2 Trx{1}λ3 + Trx{1}λ4

= t (λ; x)α1,...,α4
α1,...,α4

,
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Table 1. Spectrum of the transfer matrix with complex dimension x.

P t (λ; x)

π x
2 − x3

2 + x5

16 + 2x−x3

2 λ + 4x−x3

2 λ2 + 2xλ3 + xλ4

π x
6 − x3

12 − x5

48 + 4x−x3

6 λ + 10x−x3

6 λ2 + 2xλ3 + xλ4

0 x
6 − x3

6 + x5

16 + 2x−x3

2 λ + 4x−x3

2 λ2 + 2xλ3 + xλ4

0 − x
30 + x3

12 + x5

80 + x3λ
2 + 2x+x3

2 λ2 + 2xλ3 + xλ4

π/2 8ix+(4−8i)x3−x5

48 + (4+2i)x−(1+2i)x3

6 λ + 10x−x3

6 λ2 + 2xλ3 + xλ4

π/2 − 8ix−(4+8i)x3+x5

48 + (4−2i)x−(1−2i)x3

6 λ + 10x−x3

6 λ2 + 2xλ3 + xλ4

where the last line is obtained after inserting the values from expansion (4.7). Thus, we find
agreement with (4.3). To illustrate the generalized transfer matrix of complex dimension
further we present its eigenvalues for each total momentum P = −i ln t (0) sector in table 1.
Specializing x to be an integer >0 one obtains the eigenvalues of each element in the fusion
hierarchy.

5. The quantum Wronskian

The second computational advantage from the Q-operator analysis is of great practical
importance in the actual computation of the spectra of the Hamiltonian and the transfer
matrices. Instead of solving the quite intricate Bethe ansatz equations, one can now turn the
ideology around and rather interpret relation (4.2) for x = 1, named the quantum Wronskian,
as the fundamental identity,

M∏
m=1

(λ − λm) = ωQ+
ω(λ − 1)Q−

ω (λ) − ω−1Q+
ω(λ)Q−

ω (λ − 1)

ω − ω−1
. (5.1)

Here we have exploited the factorization (3.6). In terms of eigenvalues (3.12), (3.14), the
above relation incorporates the Bethe ansatz equations above and below the equator with
respect to the parametrization (2.1),

M∏
m=1

ξ±
i − λm

ξ±
i − λm + 1

= ω±2
n±∏
j=1

ξ±
i − ξ±

j − 1

ξ±
i − ξ±

j + 1
, n± = M/2 ∓ Sz, (5.2)

and is therefore sufficient to analyse the spectrum. Introducing the elementary symmetric
polynomials e±

k = ek

(
ξ±

1 , . . . , ξ±
n±

)
in the Bethe roots

Q±
ω (λ) =

n±∑
k=0

(−)ke±
k λn±−k, (5.3)

the quantum Wronskian (5.1) becomes the following identity:

eM−m(λ1, . . . , λM) =
m∑

k=0

∑
�m−k

(


m − k

)
ωe+

n−e
−
M−n−k − ω−1e+

n−ke
−
M−n−

ω − ω−1
, (5.4)

which is quadratic in the M unknowns e±
k . Here, em(λ1, . . . , λM) is the mth elementary

symmetric polynomial in the inhomogeneity parameters. Furthermore, we use the convention
e±
k ≡ 0 for k < 0 and k > n± = M/2 ∓ Sz. In contrast, the Bethe ansatz equations (5.2)

are of order M. The approach based on the quantum Wronskian (5.1), therefore, leads to a
significant advantage in numerical computations for long spin chains.
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Note that in the limits ω → 0,∞ we can easily establish the completeness of the Bethe
ansatz for generic inhomogeneity parameters by a similar line of argument as it has been used
in [23]. Namely, assuming all inhomogeneity parameters {λj } to be mutually distinct we infer
from the quantum Wronskian (5.1) the solutions

ω = ∞: Q+
∞(λ) =

n∏
j=1

(
λ − λmj

+ 1
)

and Q−
∞(λ) =

M−n∏
j=1

(
λ − λmj+n

)
for any permutation (m1, . . . , mM) of the index set {1, 2, . . . , M}. Obviously, the number of
distinct solutions is then

(
M

n

)
which coincides with the dimension of the associated spin sector.

For ω = 0 the roles of Q± are interchanged. Using the implicit function theorem one can
then argue that the number of solutions stays the same in the vicinity of the point ω = ∞
respectively ω = 0.

5.1. Special solutions for homogeneous chains of even length and Sz = 0

Let M ∈ 2N and consider the spin sector Sz = 0. Then, according to our previous discussion
Q+

ω and Q−
ω have the same polynomial degree n = M/2 and in light of (3.21), (3.23) one

might expect a simple relationship between them. In fact, based on numerical studies of
homogeneous spin chains up to length M = 10 and ω = eiφ, φ ∈ R, one confirms that there
exist 2M/2 solutions to the quantum Wronskian which satisfy

M ∈ 2N, Sz = 0: Q−
ω (λ) = (−1)

M
2 Q+

ω(−λ − 1). (5.5)

Notably, for the mentioned examples M = 2, 4, 6, 8, 10 the eigenvalue of the transfer matrix
which belongs to the ground state in the limit ω → 1 always appears to be among this set of
special solutions.

For the numerical investigation, it is more convenient to use the second parametrization
(2.2) of the XXX model, since then the coefficients (not the roots) of the polynomials

Q̃±
ω (u) = in±Q±

ω (−iu − 1/2) =
n±∏
j=1

(
u − v±

j

)
are always real numbers. In this parametrization the special relationship (5.5) simply becomes

M ∈ 2N, Sz = 0: Q̃−
ω (u) = (−1)

M
2 Q̃+

ω(−u). (5.6)

At the moment there is no derivation from first principles for this simplification; however, it
can be motivated by (3.21) which states that left and right eigenvectors of the Q-operator are
related by spin reversal. As the spin zero sector is invariant under the action of the spin-reversal
operator it can happen that some left and right eigenvectors of Q coincide leading via (3.21)
to the simplification (5.5) respectively (5.6). Assuming the latter to hold true, one can verify
it for chains of length M > 10 by inserting this special subset of solutions into the Wronskian
relation which then simplifies to

uM = (−1)
M
2
ωQ̃+

ω

(
u − i

2

)
Q̃+

ω

(−u − i
2

) − ω−1Q̃+
ω

(
u + i

2

)
Q̃+

ω

(−u + i
2

)
ω − ω−1

. (5.7)

Specializing the spectral parameter to u = v+
j + i

2 and u = v+
j − i

2 we now obtain the following
sets of equations for the Bethe roots v+

j of this subclass of solutions:

(
v+

j + i/2
)M = ω−1

ω−1 − ω

M/2∏
k=1

(
v+

j − v+
k + i

)(
v+

j + v+
k

)
(5.8)
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Table 2. Ground-state eigenvalues of the transfer matrix and Q-operator in the spin zero sector for
various twist parameters. For φ = π/2 the ground state is two-fold degenerate.

φ M = 10

π
2 Q+ = u5 ∓ 0.776 9661 u4 − 0.323 1618 u3 ± 0.111 7312 u2 + 0.011 891 u ∓ 0.011 8901

t = ±1.553 932 u8 ± 6.047 51 u6 ± 9.740 55 u4 ± 7.584 83 u2 ± 2.375 84
π
20 Q+ = u5 − 0.069 3516 u4 − 0.403 661 u3 + 0.010 5767 u2 − 0.016 6721 u − 0.000 1079

t = 1.975 38 u10 + 7.429 36 u8 + 13.5893 u6 + 14.8551 u4 + 9.333 35 u2 + 2.590 13
π

200 Q+ = u5 − 0.006 9288 u4 − 0.404 443 u3 + 0.001 0573 u2 − 0.016 7203 u − 0.000 1079
t = 1.999 75 u10 + 7.499 29 u8 + 13.6758 u6 + 14.9119 u4 + 9.352 24 u2 + 2.592 41

0 Q+ = u5 − 0.404 451 u3 − 0.016 7203 u

t = 2u10 + 15
2 u8 + 13.6767 u6 + 14.9125 u4 + 9.352 43 u2 + 2.592 43

and

(
v+

j − i/2
)M = ω

ω − ω−1

M/2∏
k=1

(
v+

j − v+
k − i

)(
v+

j + v+
k

)
, (5.9)

respectively. Since ω lies on the unit circle, both equations are equivalent under complex
conjugation as the Bethe roots v+

j are either real or occur in complex conjugate pairs. Dividing
these two equations yields the familiar Bethe ansatz equations for twisted boundary conditions,(

v+
j + i/2

v+
j − i/2

)M

= ω−2
M/2∏
k �=j

v+
j − v+

k + i

v+
j − v+

k − i
. (5.10)

Thus, we infer that extending the assumption (5.6) beyond the numerically checked examples
of spin chains of length M � 10 (compare with table 2) is compatible with the Bethe ansatz.
The corresponding eigenvalues of the transfer matrix are of the form

t̃ (u) = iMt(−iu − 1/2) = (ω + ω−1)uM +
M/2∑
m=1

t̃muM−2m, (5.11)

i.e. only even powers of the spectral parameter u occur. In addition, the parameters t̃m are
real and the eigenvalue corresponding to the ground state in the limit of periodic boundary
conditions ω → 1 is distinguished by the fact that all coefficients have the same sign,
sgn t̃m = sgn(ω + ω−1). We leave a more detailed study of these solutions to future work as it
involves more extensive numerical calculations.

5.2. Eigenvalues in the limit of periodic boundary conditions

Let us make contact with the discussion of Pronko and Stroganov for the XXX model with
periodic boundary conditions φ = 0 respectively ω = 1 [24]. Starting from the TQ equation
on the level of eigenvalues they reported the following quantum Wronskian relation with
respect to the parametrization (2.2):

Q−
(
u +

i

2

)
Q+

(
u − i

2

)
− Q−

(
u − i

2

)
Q+

(
u +

i

2

)
= uM, (5.12)

with the crucial difference that the degree of the second linearly independent solution Q− is
now increased by 1,

Q−(u) = −i

2Sz + 1

M−n+1∏
k=1

(u − v−
k ). (5.13)
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Table 3. Number of solutions to (5.12) in comparison with the dimension of the spin sector.

M 3 4 5 6 7 8 9 10
Sz 1/2 0 1/2 0 1/2 0 1/2 0
dim 3 6 10 20 35 70 126 252
No 2 2 5 5 14 14 42 42

Table 4. Solutions to the quantum Wronskian (5.12) for M = 6, Sz= 0 and the corresponding
eigenvalues of the transfer matrix.

iQ−(u) Q+(u) t̃(u)

u4 − 3
2 u2 − 1

48 u
(
u + 1

4

) − 25
32 + 15

8 u2 + 9
2 u4 + 2u6

u4 + 4∓√
13

2 u2 − 7∓2
√

13
16 u3 + 5∓2

√
13

12 u 31±8
√

13
32 + 7±8

√
13

8 u2 + 9
2 u4 + 2u6

u4 + u2 ± u

2
√

3
− 1

16 u3 + u
12 ± 1

4
√

3
− 1

32 ∓ √
3u + 23

8 u2 + 9
2 u4 + 2u6

The degree of the other solution, Q+, describing the well-known Bethe roots above the equator
remains unchanged,

Q+(u) =
n∏

k=1

(
u − v+

k

)
. (5.14)

We have deliberately denoted their solutions Q± by a different symbol to distinguish them
from the solutions Q±

ω obtained from our operator construction at quasi-periodic boundary
conditions. As already pointed out in the introduction, the quantum Wronskian (5.12) has a
restricted number of solutions which is much smaller than the dimension of the respective spin
sector fixed by the degree n = M/2 − Sz. These solutions must correspond to regular Bethe
states which yield the highest weight vectors of the various sl2 modules, while the ‘missing’
states are simply descendant states from highest weight vectors which lie in a different
(higher) spin sector. For instance, in the case of even M the possible number of highest
weight states in the sector Sz = 0 is given by

(
M

M/2

) − (
M

M/2−1

)
and we find that this number is

matched by the solutions to (5.12); see table 3.
The simplified expression for the transfer matrix in terms of the two linearly independent

solutions Q± remains formally the same [24]; however, we remind the reader that the degree
of Q− has changed in comparison with (4.1),

t̃ (u) = Q−(u + i)Q+(u − i) − Q−(u − i)Q+(u + i). (5.15)

See table 4 for a concrete example. Naturally, one wonders how the solutions Q± are related to
those at quasi-periodic boundary conditions, Q̃±

ω (u), when the limit ω → 1 is taken. One finds
that only a subset of the solutions Q±

ω stays finite; the other solutions diverge. In the explicit
construction of the Q-operator this is due to the fact that the trace over the infinite-dimensional
auxiliary space does not converge any longer. The number of finite solutions, i.e. those for
which the limit ω → 1 is well defined, approach the solution Q+ of Pronko and Stroganov:

if lim
ω→1

∣∣Q̃±
ω (u)

∣∣ < ∞, then lim
ω→1

Q̃±
ω (u) = Q+(u). (5.16)

The above relation has been numerically verified for spin chains up to length M = 10. Note
that both solutions Q+

ω and Q−
ω approach in the limit ω → 1 the same solution Q+ above

the equator. This is to be expected as the degree M − n of Q−
ω can become smaller in the

limit of periodic boundary conditions but not greater. At the moment there appears to be no
Q-operator construction which would yield the other solution Q− and at the same time have
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the analogous factorization property (3.6). The constructions suggested in the literature for
periodic boundary conditions [25–27] all have degree � M for the spin 1/2 chain of M sites,
while the maximal degree of Q− is M + 1.

6. Conclusions

In this work, we have presented the isotropic limit of a previous Q-operator construction
for the XXZ model [33, 34, 36, 37] in order to discuss the XXX model with quasi-periodic
boundary conditions. The motivation for this discussion has been twofold. On the one hand,
this construction enables one to formulate an analytic continuation of the fusion hierarchy
to complex dimension as it has been recently used in the description of correlation functions
in the form of a trace functional [29]. In this context, it should be noted that previous
constructions of Q-operators for the XXX model [25–27] have always been for periodic
boundary conditions where an analogous formulation does not exist. This is due to the fact
that the trace over an infinite-dimensional auxiliary space has to be taken whose convergence
is not necessarily guaranteed. Moreover, due to the sl2 symmetry the set of solutions to the
Bethe ansatz equations is reduced (i.e. only the highest weight states in each sl2 module are
proper Bethe states), whence certain functional relations such as the quantum Wronskian for
periodic boundary conditions [24] do not yield the complete set of eigenvalues; compare with
table 3.

This provided additional motivation for investigating a Q-operator for the twisted XXX
model. Via this construction one is lead to a quantum Wronskian for quasi-periodic boundary
conditions (see (5.1)), which now yields the complete set of eigenstates, all of them being
Bethe states, and eigenvalues of the transfer matrix. Our derivation relied on previous algebraic
Bethe ansatz results for the Q-operator of the XXZ model [33]. As emphasized in the text,
the quantum Wronskian has a simpler structure than the Bethe ansatz equations and based
on numerical computations we found special solutions for spin chains of even length and
vanishing total spin satisfying more fundamental identities. For instance, the Bethe roots of
the aforementioned subset of solutions obey the set of equations,

(
v+

j + i/2
)M = ω−1

ω−1 − ω

M/2∏
k=1

(
v+

j − v+
k + i

)(
v+

j + v+
k

)

and are either real or occur in complex conjugate pairs; see the discussion in section 5.2.
Among these special solutions is the eigenvalue which corresponds to the ground state in the
limit of periodic boundary conditions and has real Bethe roots. The present numerical data
only include chains up to length M = 10 and further investigation is needed to see whether
they persist for longer chains. This is particularly important in order to make contact with the
thermodynamic Bethe ansatz and the string hypothesis [10, 16, 38]. As has been discussed in
the literature, there might be a critical length beyond which certain solutions cease to exist,
see e.g. [10, 39]. We leave this problem of a more extensive numerical study to future work.

Acknowledgments

This paper has been motivated by discussions at the DFG Summer School ‘Representation
Theory in Mathematical Physics’, 18–22 July 2005, Bad Honnef, Germany and the author
would like to thank the organizers and the participants for interesting discussions. This work
is financially supported by a University Research Fellowship of the Royal Society.



3218 C Korff

References

[1] Baxter R J 1972 Partition function of the eight-vertex lattice model Ann. Phys., NY 70 193–228
[2] Baxter R J 1973 Eight-vertex model in lattice statistics and one-dimenisional anisotropic Heisenberg chain I–III

Ann. Phys., NY 76 1–24, 25–47, 48–71
[3] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[4] Pasquier V and Gaudin M 1992 The periodic Toda chain and a matrix generalization of the Bessel function

recursion relations J. Phys. A: Math. Gen. 25 5243–52
[5] Krichever I, Lipan O, Wiegmann P and Zabrodin A 1997 Quantum integrable models and discrete classical

Hirota equations Commun. Math. Phys. 188 267–304
[6] Bazhanov V, Lukyanov S and Zamolodchikov A 1997 Integrable structure of conformal field theory II:

Q-operator and DDV equation Commun. Math. Phys. 190 247–78
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